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1. INTRODUCTION

I The purpose of this research study has been to devise a physi-

cally sound alternative to the Smith1 - Van Ing en2 e9 procedure

I for predicting boundary-layer transition . The need for develop-

ing an alternative procedure stems from the following : On the

i one hand , there is little doubt that stability theory ’s Toilmien-
I Schlichting waves exist and play an important role in the initial

stages of transition. On the other hand , because the end state

of the transition process is a (highly nonlinear) turbulent flow,
linear-stability theory must break down at some point between

that of the initiation of Tollmien-Schliehting waves and the

transition point (defined, kfor example , as the point where skin
friction achieves a minimum). In other words , linear-stability

theory is inapplicable in the post-critical stages of transition
I and therefore has no natural way of specifying the actual transi-

tion point. The empirical e9 method ignores this conceptual
limitation and thus has a questionable physical foundation .

Under sponsorship of the Office of Naval Research (ONR), DCW

Industries has taken an important first step toward developing a

physically-sound alternative to the e9 ~nethod for predicting
transition. The basic approach has been to devise a synthesis

of linear-stability theoTy and turbulence-model techniques by

using each theory only in the regime where its inherent limita-
tions determine its applicability . Our first step has consisted
of showing that a key closure coefficient , A , in the turbulence-

I model equations is relatively insensitive to frequency after a
boundary-layer disturbance has been amplified to about e” times

its initial value , provided the boundary layer is unstable.

J While results of this first step have been very encouraging ,

- 
analys is has been conf ined to the Blas ius bound ary layer ,

1

_ _ _ _ _ _ _  —

~: 
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primarily because of difficulties encountered in acquiring and
debugging modifications to the Mack stability program . Addi-
tional research has been needed to confirm our hypothesis that a
linear-stability/turbulence-model synthesis is feasible.
Specifically, two things need to be done . First , for the
constant pressure case, actual transition predictions must be
made using the stability-predicted A profile and appropriate
initial and boundary conditions . Second , computation of this
key closure coefficient when the pressure varies is needed to
provide a more stringent test of our hypothesis. Both ends have
been accomplished in this research study.

Section 2 reviews the basic formulation underlying our theoret-
ical approach. In Section 3, the Blasius boundary layer is
analyzed including comparison of predicted and experimentally-
measured transition points. Effects of both adverse and favorable
pressure gradient are addressed in Section 4. Results and con-
clusions follow in Section 5.
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2. THEORETICAL FORMULATION

In this section , for the sake of completeness , we first review

the overall approach devised by Wilcox.4 Then the turbulence
model equations underlying the approach are presented. Finally,
the manner in which turbulence-model parameters are computed from
a given linear-stability solution is delineated.

2.1 OVERVIEW

Conceptually, our overall approach to predicting boundary-layer

transition consists of three interrelated phases. In the first
phase conventional linear-stability computations are performed up
to and beyond the point at which a disturbance becomes unstable.

As a key feature of these first-phase computations we have found

empirically4 that the computations are most appropriately termi-
nated when the initial disturbance has been amplified by a factor
of e ’. In the second phase the linear-stability solutions at the
e” -ainplification point are used to compute key turbulence model
parameters which are needed to specify the closure coefficient A
as well as initial and boundary conditions for a subsequent I

turbulence-model calculation. In the third phase a boundary-layer

program incorporating the Wilcox-Traci4 6 turbulence-model
equations is used to predict the actual transition point . Most
notably, a range of frequencies is considered in all phases of

the computational procedure.

The rationale of this approach is two-fold. First, using linear-

stability theory in the initial phase of the procedure allows us
to take proper account of the transition phenomenon ’s sensitivity

to the frequency of the disturbance. Using the turbulence-model

equations is quite inappropriate in the initial phase as long-

time averaging (which is an integral aspect of the turbulence-

model theory) precludes explicit representation of frequency
effects. Second, using the turbulence-model equations in the

- 
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final phase allows us Cat least on a conceptual level) to
represent nonlinear processes which ultimately must become
dominant as the boundary layer nears transition to a turbulent
state. Using linear-st~~Ility theory is quite inappropriate in
the final phase as the linearization precludes explicit repre-
sentation of nonlinear effects.

The astute reader will notice that a key premise is implicit in
the rationale of our approach. Specifically, for this approach
to work, it must be the case that either (a) the transition
phenomenon is frequency independent beyond the e”-amplification
point or (b) a method exists whereby frequency effects can be
explicitly expressed in the turbulence-model equations during
the latter phases of transition. As will be demonstrated in
this report , while the transition process is somewhat frequency
dependent beyond the e”-ainplification point , this frequency
dependence can indeed be explicitly expressed in the model
equations .

The remainder of this section is devoted to a description of the

turbulence-model equations and the manner in which key turbulence-
model parameters are computed from a linear-stability solution .

2.2 TURBULENCE-MODEL EQUATIONS

The two-equation model of turbulence developed by Wilcox and
Traci5’6 is used in this study for predicting boundary~layer
development during the latter phases of transition. For incom-
pressible boundary layers this model consists of the long-time
averaged conservation of mass and momentum equations and two
additional rate equations . Denoting arc length and surface-
normal distance by x and y with corresponding velocity components
u and v , the four equations of motion for incompressible boundary
layers are:

- 

4

I
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~~~~ ~~
where p is pressure and ‘v is kinematic viscosity . The quantity e
is kinematic eddy viscosity which is computed as the ratio of
specific turbulent mixing energy , e, to turbulent dissipation

- 
rate, w , i.e.,

(5)

Also , 2. is the turbulence length scale computed according to
- 2. = e1/w ( 6)

1 Finally, the quantities c~, a*, 8, 8~ , a and 
y~ are closure

coefficients whose values appropriate for turbulent flows have
been found empirically 5 to be given by the following :

= 3/20 , 8* = 9/100
c = l / 2 , a* = 1 1 2

1 (7)I = 
~~
. [1 - (1-A) exp (_Re

T/2)]

ci* =
~~~~~~

. [1 - (1-A) exp (-2Re T)]

1 Wher e ReT is Reynolds number based on turbulence properties
defined as

I.
111
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ReT 
= e½2./v (8)

and the quantity A is an additional closure coefficient whose
value has been found by Wilcox6 to vary with freestream
turbulence level , surface temperature and pressure gradient.
For the Bias ius boundary layer a value of A = 1/il has been found
to yield transition-point predictions in reasonably close agree-
ment with experimentally measured transition points.5’6

Experience with the model equations6 has shown that the model ’s
ability to predict transition hinges most heavily upon the
closure coefficient A. I

Equations (l)-(4) must be solved subject to boundary conditions
at the surface, y 0 , and at the boundary-layer edge , y=~5 , where 6
is boundary-layer thickness. Prior studies have established that
for perfectly-smooth surfaces (roug h surfaces are not considered
in this study), we must require

u = v =  e =  0 a t y =  0 (9)
and

5~2 as y -’• 0 (10)

Denoting conditions at the boundary-layer edge by subscript e,
we must also require

u = U e (x) a t y = 6  (11)

while ee(x) and W
e
(X) must satisfy the following simplified

equations :
de e = - 8* w ee~~j e e

a t y = 6  (12)
dw 2 

— 3u e - - pw
e a~~ 

e

6

~p,- 

~~~~~~~~~~ 
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2.3 COMPUTING TURBULENCE-MODEL PARAMETERS

I FROM A LINEAR-STABILITY SOLUTION

I As stated in Subsection 2.1, before the turbulence-model phase
of the computation can be initiated , initial and boundary con-

I ditions as well as the closure coefficient A must be deduced from
the linear-stability solution. To do so we must first note

I several important facts about the various turbulence-model
parameters.

First of all , in order to define initial and boundary values for
e and w we note that Wilcox and Chambers7 have defined these

I quantities in terms of the fluctuating vertical velocity , v ’,

I according to the following :
I e = <v ’2 > (13)

I and
= 

3v < (h’/ay)2> p14)w <v ’s >

I where < > denotes long-time average . As the linear-stability

1 solution yields the inztantaaeous v ’ prof ile, Equations (13) and
(14) are sufficient to determine e and w profiles provided a

I suitable time-averaging process can be defined .

I Next, in order to determine A , we first rewrite Equation (3)
under the standard parallel-flow assumption (i.e., vEO) and in

I the limit of small turbulent Reynolds number (i.e., Re << 1).
The result is

1 u = 
~~~~~~ ~~~~ e - 8*we + ~

9
~
e (15)

I I 
_ _ _ _ _ _ _ _

I Note that in the actual turbulence-model phase of the compu-
tation , Equation (3) is used . Equation (15) has been introduced

I only to devise a method for computing A from the linear-stability
solu tion .

I 
V 7

I
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Now , noting the definition of e given in Equation (13), we can
derive an exact equation for its evolution by taking the v ’

moment of the v-momentum equation and time averaging . Assuming
that in the limit ReT+O the triple correlation term is negligibly
small , we obtain

= - 
~~~ <~~~

‘
~~~~~

‘
> - ~~ 

~
<(

~
-)

~
> + v (16)

Comparison of Equations (15) and (16) shows that the closure
coefficient A can be defined as follows :

2<! !2’>
10 \9y I ~ ~y (17)

A
<v ’s > ~~u/3y~

The final step in relating the linear-stability and the turbulence-
model parameters is to define an appropriate long-time average.
To do so we note first that in the linear-stability solution the
velocity and pressure fluctuations , v ’ and p ’, are written as

v ’(x ,y,z ,t) = U~ •(y) exp [i(~x+~z-~ t)] (18)

p ’(x ,y,z,t) = pU~
2ir(y)exp [i(~ x+~ z- t)] (19)

where t denotes time , z is distance normal to the x and y axes ,
U~,, is freestream velocity , p is density, ~ and 8 are wave numbers ,
w is frequency , and the functions • (y) and ~r (y) are the complex
amplitude functions of the fluctuating flow variables v ’ and p ’.

To evaluate the time-averaged quantities appearing in Equations
(13), (14) and (17) we use the following de~i.inition:

t+T
= ~im _-2._(ip(x ,y,z,r)dt (20)

wT.ca~ 2TJt T

8
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1
Then, working with the real parts of the linear-stability

I 
solution , performing all time averages indicated in Equations
(13), (14) and (17), and denoting loca l Reyno lds number by R

j yields the following :

e/U~ 
= .~. (q~2 + (21)

(d+r/dfl)
2 + (d

~~
/d n)2

(22)
U~ $*~~~2 (

~ 
+

I

I R [(d~r/dfl)2 
+ (dq i/dn)2]

_ 
2[4~r

d7rr/dfl+d~i
d1Ti/dn]

x = 4 ~ (.~ + I 3U/anI (23)

where UEu/U~ , subscr ipts r and i denote real and imaginary parts ,
and Ti j S dimensionless distance defined by

ii y ~~~~~ (24)

with Ue denoting horizontal velocity at the boundary-layer edge.

I Note that for the constant-pressure case, Ue 
= U~ . Equations

(2l)-(23) are the desired relations which can be used to define
A and the initial and boundary conditions for a turbulence-model
computation in terms of a given linear-stability solution.

& 1~
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3. RESULTS FOR CONSTANT PRESSURE

In this section we implement the basic method for the constant-
pr essure case , i.e., for the Blasius boundary layer. First ,
we compute the closure coefficient A for a range of frequencies
and demonstrate that beyond the e”-amplification point A

asymptotes to a nearly frequency-independent profile. Next,
we compute e and w profiles at the e”-amplification point
which can be used to initiate a turbulence-model computation.
Then, we establish boundary conditions for the turbulence-
model phase. Finally, transition predictions are made and
compared with experimental data ,

3.1 EVALUATION OF THE CLOSURE COEFFICIENT A

Using Equation (17), Wilcox4 has computed A profiles for the
Blasius boundary layer. For the sake of completeness results
obtained in the Wilcox study are repeated in this subsection.

A large number of linear-stability computations have been per-
formed with the Mack3 stability program ; all computations have
been done with the spatial amplification theory option . Both
Reynolds number and frequency have been varied in order to
determine the variation of A throughout the Reynolds-number!
frequency plane .

Figure 1 shows computed A profiles at nine Reynolds numbers
corresponding to one stable case , one neutrally-stable case ,
and seven unstable cases corresponding to amplification from
the neutral case by factors of en with values of n ranging 0
to 10; for all nine cases the frequency is given by

Fr = ~v/ U2 = 2~ l0~~ (25)

I We are thus following the evolution of A for a constant-

frequency disturbance at a Reynolds number upstream of the

neutral point corresponding to the frequency given in
Equation (25).

10
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Figure 1. Computed A profiles for dimensionless frequency
Fr = 2~l0~~; zero pressure gradient .
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As shown , although A varies rapidly with y near the surface , all

nine curves display approximately the same variation . However ,
abQve a value of 1=2 , the various A profiles vary rapidly with n
and do so in dissimilar manner for amplification rates up to e” 5 6 .
For examp le , at the lowest Reynolds number for which the solution
is stable , A is negative above ~=2 . As we move to the neutral

point we find that A vanishes for values of Ti in excess of 2.5.
Then as Reynolds number increases , A varies more and more rapidly
with n and asymptotes to a single curve for amplification ratios
in excess of be tween e 3 and e ’ .

Figure 2 shows similar curves for a dimensionless frequency Fr

given by
Fr = 3.10 5 (2 6)

Aga in , the curves collapse to a single curve for amplification
ratios in excess of e ’.

Computations have been performed for frequencies covering the
entire stability diagram . For each frequency considered the
computed A profiles always asymptote to a universal profile
beyond the e”-amplification point with a subtle qualification.
That is , referring to Figure 3, as Reynolds number increases the
upper branch of the stability diagram eventually is reached and
we again enter a stable reg ion. As we approach this upper

V neu tral poin t , the A proflies beg in to fall back to those typ ical
of low Reynolds numbers.

The rapid variat ion of A near r i O  results from a breakdown in
the basic closure approximations near the surface. That is , the

the production term in the <v ’2 > equation , ~~~~~~~~ goes to
zero quadraticall y with distanc e from the surface so that , in
terms of ri ,

<-  . > “. as Ti+O (27)

12
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By contrast , the modeled production term for ReT+O behaves as

i ~~~~~~ e “i.. A~
k 

V as ~-~-O (28)

I Consequently, close to the surface we have

A “~ as n-~O (29)

I
This modeling shortcoming is of little consequence as dissipation

I exceeds production near ri=0. Hence , for the remainder of this
discussion our focus will be upon the region between i=l and theI outer edge of the boundary layer, ~=S.

I Fi gure 4 shows computed A profi les  for several frequencies and
amplification ratios. As shown, all of the computed A profiles

I cluster about the approximate profile defined by

I A = .0093 + .00156 exp [.
~

. (~_l)] (30)

The fact that the computed A profiles correlate with the profile
defined in Equation (30) independent of frequency is extremely
important . This is our first indication that using the turbulence-
model equations to describe the latter stages of transition is
feasible.

It is interesting to examine the rate of approach to the asymptotic
profile which is most conveniently done in terms of the average
value of A defined as follows :

‘.5
V 

A A dri (31)

1
Figure 5 shows A as a function of displacement thickness Reynolds

number , Re *; note that Re * denotes the neu tral-stability value

of Re 6* for a given frequenc~~. As shown , for the higher

I
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Figure 4. Profiles of the closure coefficient A for various
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frequencies A approaches its asymptotic value most rapidly.

For Fr = 0.5 10 5, the lowest frequency at which computations
have been done , the approach to the asymptotic values lie
between A .066 and A= .083, as compared to the postulated 6

turbulence-model value of .091.

Further examination of the A variation with Reynolds number

shows that, for the higher frequencies , the peak value is
achieved at an amplification ratio of about e~ while , for the
lowest frequency, A is about half its asymptotic value at this
ratio . Figure 6 presents the variation of A with frequency
for amplification ratio e” , including a correlation of the
computed values; the correlation is:

— 7 ( 1 2 5  4
= .

~~ 1 - exp 
[ —s— (10 Fr)] (32)

The asymptotic values of A , denoted asA ax are also shown
for reference. Two key conclusions can be drawn from the
computed variation of A. First, beyond an amplification ratio
of ek , A varies slowly with Reynolds number. Second, A is only
weakly frequency dependent for frequencies in excess of
Fr = ~~~~ These two points lend further credence to our
hypothesis that turbulence-model equations potentially can

yield a sound physical description of the latter stages of
transition .

3.2 INITIAL PROFILES

Having established Equation (30) as a satisfactory correlation
of computed A profiles we now turn to initial profiles for e
and w which are needed to initiate a boundary-layer computa-
tion beyond the eu -amplification point. Figures 7 and 8 show
compu ted profiles for e and w at the e~ -amplification point .

These profiles have been obtained from the linear-stability
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Figure 7. Computed turbulent mixing—energy profiles after an
initial disturbance has been amplified by a factor
of e~ ; zero pressure gradient .

20

I
I 1*

~~~~
- 

~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~ . —~ _~.. ~~~.. -



2 X W
— 20 Ue

1.0 I I I

1.0 -

1.0

I 1.0~~~~

\ 

-

1.0 

lO k Fr = .05 

-

I .8
k\ \ 

-

I \ \ \  .1
. 6  — —

I
I . 1 4 -  

.2 
—

- .3

I .2 - —

1 1
1 0 I I

1 0 .2 • 14 .6 .8 1.0

i
I Figure 8. Computed turbulent dissipation—rate profiles after

an initial disturbance has been amplified by a fac-
tor of e~ ; zero pressure gradient .

21
1 

_____________  _____________— ~~~~~~~~~ ~~ • 1 1 - ~~~~~~~~~~~~~~~~~~~~~~~~~

V 
~~~~~~~~~~~~~~~~~~~ V V

- ~~~~~~~~~~~~~~ 

, —~~~~~pr~~ n~i.~-— —~.4.fl~*JWU U..~.--- - _~~~~~~ I ~~~~~~~~~~~~~~~~~~~~~ ~~ V



- - -

computations and Equations (21)-C22) . In each of the figures

profiles are shown for five values of the dimensionless
fr equency , Fr.

The e profiles are displayed in terms of e/ee vs. y/d where
ee is the value of e at the boundary-layer edge and S is
boundary-layer thickness. The w proflies are parameterized
as a function of ~ vs. y/tS where ~ is defined by

_ 8 2 x w
~~~~~~~~~~~~~ tF (33)

where the value of B is given in Equation (7). As shown, the
profiles are similar for the various frequencies although
significant differences in amplitude are clearly indicated .
These e and ü profiles have been fitted with cubic splines
which yield a high degree of accuracy for values and slopes
of the profiles.

3.3 BOUNDARY CONDITIONS

Before proceeding to the turbulence-model computations ,
boundary-conditions must be specified at the boundary-layer
edge , y = S .  As in all previous computations , the boundary
condition for e is determined by the freestream turbulence
intensity according to

T ’ = 100 \J~~~~
Ue (34)

where T’ is turbulence intensity given in percent. To set the

value of ‘ne’ we have analyzed the linear-stability-predicted
values. Figure 9 shows that at the es-amplification point ,
VW e/U

~ 
correlates with the dimensionless frequency, Fr ,

according to the following formula:
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frequency; zero pressure gradient .
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7/4
— = 25 Fr (35)

In Equation (35), We denotes the value of ‘
~e 

at the ek~
amplification point .0 Fur thermor e, according to the turbulence
model equations , We satisfies the equation

V 

dw 2
Ue ai~ 

= ~~~~~~~ (36)

so that , in terms of the function ~ defined in Equation (33),
We should vary with distance from the plate leading edge as

= [j . + 
~~~~~~ ~e(~~ 

- 

1)] 

-1 
(37)

where is the value of ~ at y=5 and x0 is the value of x at

the &‘-amplification point. Pigure 10 compares the linear-
stability-computed variation of We wi th the varia t ion given
by Equation (37). As shown, the two variations are reasonably
close. Hence, Equations (35) and (37) have been used in the
computations.

Before proceeding to resul ts of the computat ions , it is in-
structive to pause and discuss the implication of the derived
boundary cond ition for w . Unlike previous turbulence-mode l

transition-prediction computations , we are not at liberty to

arbi trar i ly  specify W
e~ 

This is an important point because
the boundary condition for w has been amb iguous in the pas t

and its specifica tion has prov ided the equivalent of an

“adjustable parameter ” in the theory. Elimination of this

adjustability enhances utility of the method , particularly if

it proves to be an accurate predictive tool.
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3.4 TRANSITION PREDICTIONS

To asse ss the accurac y of the method, a series of computations
has been performed for the Blasius boundary layer. In all
calculations we have used : Equation (30) to define A; cub ic
spline fits for the initial e and (L) profiles shown in Figures
7 and 8; and Equations (34),(35) and (37) to define boundary-
layer edge conditions for e and W. Further , in the computa-
tions, freestream turbulence intensity varies from .01% to
.50% while 0.1 < 1O’4Fr < 0 . 1 4 .  The upper bound on Fr has
been chosen because 0.4~l0~~ is the highest frequency for
which the stability diagram is sufficiently wide to permit
amplification much beyond a factor of e4 so that our procedure
becomes meaningless at higher frequencies. The lower bound
on Fr has been chosen as the critical Reynolds number for
Fr=lO ’5 is well above the transition Reynolds number s observed
by Schubauer and Skramstad8, indicating that lower frequencies
are relevant only for much lower intensities than .01%. Since
we are comparing our results with the Schubauer-Skramstad data
which were taken for intensities in excess of .02%, this is a
reasonable lower bound on Fr.

Figure 11 compares computed and measured transition momentum -
thickness Reynolds number , Re6 , for four frequencies , viz ,
lO4Fr=0.l , 0.2, 0.3 and 0.4. As shown , the data lie mostly -

near the curves for lO4Fr”O.2 and 0.4. This result is quite
encourag ing as this band of frequencies is comparable to that
predicted by linear-stability theory3 to be most unstable for
the range of transition Reynolds numbers observed by
Schubauer and Skramstad . I

Figure 12 compares computed and measured transition Reynolds
number based on distance from the plate leading edge , Re

~
only the curve computed with lO4Fr=O.2 is shown for
simplicity. This figure displays an interesting feature of
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Figure 11. Comparison of computed and measured transition
momentum—thickness Reynolds number for the Blasius
boundary layer .
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the computations , viz , that following the predicted variation

of Re
~ 

with T’ down tO about T’= .03% indicates an asymptote
to a finite value of Re

~ 
as T’-’-O , similar to the trend of

the data . However below ~ T ’ .03% , the predicted Re
~ 

then
increases rapidly implying that Re

~ 
may approach an inlinite

V value as T’ ~ 0. Although not show~t in the figur e, a similar
trend appears for the other frequencies.

As evidence of the method ’s ability to properly treat spectral
effects , Fi gure 13 compares an inferred “most-dangerous”

V 

frequency with the linear-stability-theory predicted “most-
dangerous” frequency band . The inferred curve has been con-
structed by forcing agreement between model-predicted
transition point and the Schubauer-Skramstad data. As shown,
the curve lies just slightly outside the linear-stability-
theory band .

As a final note , the actual transition predictions have been
found to be relatively insensitive to initial profiles. To
make a similar claim about whether starting the turbulence-
model computation at a different point (e.g., when the
amplification ratio is e3 or e5) would require further
research. Some computations have been done from the e 5 -
amplification point and this appeared to have little effect

on the predicted transition point .
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4. EFFECTS OF PRESSURE GRADIENT

In order to investigate effects of pressure gradient , we now
repeat the analysis of Section 3 using Falkner-Skan velocity
profiles for both adverse and favorable pressure gradients.

I First , we compute A profiles at the e” -amplification point
and seek a frequency-independent correlation . Then the

I boundary-layer edge condition for w is correlated with

frequency. Results follow .

I 4.1 EVALUATION OF THE CLOSURE COEFFICIENT A

The Palkner-Skan profiles satisfy the following equation:

I
~L + f ~~~_! + 8 Fs [l~~~~

(
~~~~) 2 ] = o  (38)

I which is solved subject to:

I f = ~~~~~ 0 at
d~I

I df• — ~ 1 as
I d~

I
In Equation (38), f is the dimensionless streamfunction so

1 tha t  the velocity u is obtained from

I df
I U _ U

e (40)

I
Also , the freestream velocity, U , is given by V

j
U (X) = ~~~ (41)
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where C is a constant and in is related to the constant 8FS
appearing in Equation (38) through the following equation :

2m8FS = ( 4 2 )

Finally, the scaled coordinate is defined in terms of x,y,v
and U by

[~~l Ue
(43)

Note that for zero pressure gradient m=0 and Equation (43)
differs from Equation (24) by a factor ~/T For the sake of
consistency with our earlier computations , all results in this
section are cast in terms of n as defined in Equation (24)
rather than in terms of

For symmetry,  we consider one adverse pressure gradient profile
and one favorable pressure gradient profile , viz , we select

-0.18 , adverse Vp

8FS = (44)
+0.18 , favorable Vp

which correspond to m -  .083 and m + .099 for the adverse and

favorable cases, respectively.

Turn ing first to adverse pressure gradient , Figure 14 shows
computed values of A for several frequencies near the ek

~
amplification point ; the correlation for zero pressure gradient
[Equation (30)] is shown for reference. As can be seen , the
various A profiles show a stronger frequency dependence than
exists in the absence of pressure gradient. Furthermore , the

disparity in the various profiles fails to diminish as n
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increases. Close examination of the computed results shows

that the minimum value of A increases as Fr increases. This
trend is also present for zero pressure gradient (see
Figure 4) , although not as pronounced as for BFs O

~~
8 This

observation suggests that a better correlat ion might be
obtained by working with the ratio of A to its minimum value ,
Amjn~ 

Figure 15 shows that the ratio A /Amin does indeed
correlate nicely; the correlation is

~min 
= .9488 + .0512 exp [

~
-
~
- (

~ 
- i)] ; 8FS = - .18

(45)

Reexamination of the zero-pressure-gradient data shows that
rewriting Equation (30) in terms of A /Amin and y/6 improves

the correlation ; the revised correlation is

~min 
= .8564 + .1436 exp [~~

- (
~ 

- 
~FS = 0

(46)

Turn ing finally to favorable pressure gradient , we find

similar results to those obtained with zero and adverse

gradients , i.e., X/A mjn is weakly frequency dependent . The

favorable gradient correlation is

V rmin 
= .604 + .396 exp [

~
-
~
- (

~ 
- i)] ; 

~FS =+ .l8

(47)  

Vi

Figure 16 displays the three inferred A/A min profiles defined

in Equations (45)-(47).

As a final comment , examination of the computed values of
A .  shows that an excellent correlation of Amin can be
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devised which is independent of pressure gradient . Specif-

ically, Amin is found to vary inversely with displacement-

thickness Reynolds number , Re6~, according to the following
formula:

A .  = 38/Re
’5~ (48)

Figure 17 compares computed va lues of 
~~~~ 

with Equation (48).

4.2 BOUNDARY CONDITIONS

As the initial profiles appear to have little effect on
transition predictions attending use of the established pro-
cedure , we now proceed directly to boundary conditions. Again
we use Equation (34) to define the boundary-layer edge value
of the turbulent mixing energy . Also , Equation (37) remains
valid for determining w /w although the validity of
Equation (35) must be ascer2ained .

Figure 18 shows computed values of “ne ‘~~e
2 as a function of

Fr for fav orab le , zero and adverse pre~sure gradients. As in
the 8 =0 case , we find that vw /u 2 is proportional to Fr7”4.
Fur thermore , the following modif2ed relation correlates all of
the data to within a few percent.

0 
= 28 Fr7”4 (49)

Hence , even in the presen ce of pressur e grad ient, the edge
va lue of w is uniquely determined as a func tion of the
frequency of the disturbance.

F
37

_  _ _ _ _ _  

A
- - - I_~~~~~~ 

~~~~~~~~ V~~~
I II ~~~~ I~~I - —~~.-~~~~

‘ V

—~
- 

~~~~~~~~~~~~~~~~~~~ 
— V._ IV_

~~~~~~ ~~~~~~ 
11$L i_ 1 .  V~_ V I~~~~_ ~~~~~~~~~~~~~~~~~~~~~ W~~~~w =

~~~~~~I ’~~~~ ~~~~~~ 

— -~~-.. — -~~



A 1

.05 1 i ________________________
I PRESSURE
1 SYMBOL GRADIENT

FAVORABLE
0~4 

- 0 ZERO -

a ADVERSE

.03 - -
= 38/Re~~

.02 -
00

.01 - 
0 -

.00 . I I I I I

0 1000 2000 3000 4000 5000 6000

V Re 6~

Figure 17. Correlation of A~~ as a function of displace-
ment thickness Reynolds number , Re’5,.

38

_ _  _  _  

I
I V I V V _

~~V ,V~~c
_ I

~~
V
II

_ V _I IVII I -_____

I I I

V V 

..fl l&*L.. -_- IW V 
~~~~~~~~~~~~~~ ~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~ I -



1
~

, 

I vw /U~

I V

l~~~
_ 6

- 

I I /
I 0

I l0~~ 

~~~0 = 28 Fr 7
~

14

PRE S SURE
f SYMBOL GRADIENT

j / A FAVORABLE
3 / 0 ZERO— 0 ADVERSE -

I
I 

10
_a I I1 .03 .10 .30 1.00

I 10” Fr

Figure 18. Correlation of boundary—layer—ed ge value of the
turbulent dissipation rate with dimensionless
frequency Fr for all pressure gradients.

____________ _____ _____ ______ _____

V I I ,I~~~~t
I IV



‘
S

5 , DISCUSStON

While some fine tuning of the procedure is needed , the results

described in Sections 3 and 4 are very encouraging . Our pro-
posed synthesis of the linear-~stability and turbulence-model

transition-prediction methods appears to be quite sensible.

On the one hand , using linear-stability theory in the initial

stages of the transition phenomenon (i.e., up to the e”-

amplification point) provides a physically-sound procedure
which takes proper account of spectral effects. On the other
hand, we believe that using the turbulence-model equations to
describe the latter stages of transition with starting
profiles for e, w and A and the boundary-layer edge boundary
condition on w as predicted by linear-stability theory is
mor e physically sound than continuing beyond the e”-amplification
point with linear-stability theory .

We wish to emphasize the importance of knowing the proper
value of We As noted ear lier , uncertainty about the value of
We has left the turbulence-model transition-prediction method
with an effective “adjustable parameter” in previous analyses.
Removing this uncertainty is an important conceptual advance.
It is also important to note that the value of we is frequency
dependent so that, as would be expected on physical grounds ,
the latter stages of transition are predicted to be not entirely
independent of spectral effects. While we have yet to find a
physical explanation for the .propositionality of W e and Fr 7’~

4
,

we continue to seek such an explanation.

In conclus ion , results to date show great promise for develop—
ment of a physically-sound alternative to the e9 procedure.
Further research should be conducted to determine how well the
method predicts transition-point location for well-documented
flows with adverse and/or favorable pressure gradient . Also ,
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further testing is needed to more definitively establish the
method’s sensitivity to the point of initiation of the
turbulence-model phase of the computation. When such analyses

I have been done we feel confident a reliable analytical tool
for predicting boundary—layer transition will result.

I
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I
LIST OF SYMBOLS

SYMBOL DEFINITION

I e Turbulent mixing energy defined in Equation (13)

f Dimensionless streamfunction

I Fr Dimensionless frequency, vt’ii/U~
m Falkner—Skan profile parameter
p Static pressure
R Plate—length Reynolds number

ReT Turbulent Reynolds number defined in Equation (8)

Re 9~ 
Transition Reynolds number based on momentum thickness

I Re 6~ Reynolds number based on displacement thickness

t Time
T’ Freestream turbulence intensity

u ,v ,w Velocity components in x,y,z directions

Freestream velocity

V 
Ue Boundary-layer—edge veloci ty

I x , y , z Cartesian coordinates in streamwise , normal, lateral
direct ions V

Closure coeff icients
- Comp lex wave number

j ~,3* Closure coefficients
Complex wavenumber

8FS Falkner—Skan profile parameter
V 

‘5 Boundary—layer thickness

I Kinematic eddy viscosity

n Blaslus similarity variable

I Falkner—Skan ~imi1arity variable

Closure coefficient

I Average value of A defined in Equation (3 1)
A Minimum value of A

J Kinematic molecular viscosity
n ( y )  Complex pressure elgenfunction

I p Density 
V

Closure coefficients

I
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LIST OF SYMBOLS

SYMBOL DEFINITI ON

Complex normal—velocity eigenfunction
Dimensionless dissipation—rate function defined
in Equation (33)
Turbulent dissipation rate defined in Equation (14)

Frequency
2. Turbulent length scale , e½iw

Subscripts and Superscripts

e Boundary—layer—edge value

i Imaginary part
r Real part

Other Notation

For a given variable ~:

<~p> Long—time—averaged value of ~ defined in Equation (20)

Fluctuating part of ~

I
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